GC Content Heterogeneity Transition of Conserved Noncoding Sequences Occurred at the Emergence of Vertebrates
نویسندگان
چکیده
Conserved non-coding sequences (CNSs) of Eukaryotes are known to be significantly enriched in regulatory sequences. CNSs of diverse lineages follow different patterns in abundance, sequence composition, and location. Here, we report a thorough analysis of CNSs in diverse groups of Eukaryotes with respect to GC content heterogeneity. We examined 24 fungi, 19 invertebrates, and 12 non-mammalian vertebrates so as to find lineage specific features of CNSs. We found that fungi and invertebrate CNSs are predominantly GC rich as in plants we previously observed, whereas vertebrate CNSs are GC poor. This result suggests that the CNS GC content transition occurred from the ancestral GC rich state of Eukaryotes to GC poor in the vertebrate lineage due to the enrollment of GC poor transcription factor binding sites that are lineage specific. CNS GC content is closely linked with the nucleosome occupancy that determines the location and structural architecture of DNAs.
منابع مشابه
Biased Gene Conversion and GC-Content Evolution in the Coding Sequences of Reptiles and Vertebrates
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis car...
متن کاملNon-alignment comparison of human and high primate genomes
Compositional spectra (CS) analysis based on k-mer scoring of DNA sequences was employed in this study for dot-plot comparison of human and primate genomes. The detection of extended conserved synteny regions was based on continuous fuzzy similarity rather than on chains of discrete anchors (genes or highly conserved noncoding elements). In addition to the high correspondence found in the compa...
متن کاملAncient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis.
Fish-mammal genomic comparisons have proved powerful in identifying conserved noncoding elements likely to be cis-regulatory in nature, and the majority of those tested in vivo have been shown to act as tissue-specific enhancers associated with genes involved in transcriptional regulation of development. Although most of these elements share little sequence identity to each other, a small numbe...
متن کاملEvolution of base composition in the insulin and insulin-like growth factor genes.
The genomes of homeothermic (warm-blooded) vertebrates are mosaic interspersions of homogeneously GC-rich and GC-poor regions (isochores). Evolution of genome compartmentalization and GC-rich isochores is hypothesized to reflect either selective advantages of an elevated GC content or chromosome location and mutational pressure associated with the timing of DNA replication in germ cells. To add...
متن کاملVertebrate Paralogous Conserved Noncoding Sequences May Be Related to Gene Expressions in Brain
Vertebrate genomes include gene regulatory elements in protein-noncoding regions. A part of gene regulatory elements are expected to be conserved according to their functional importance, so that evolutionarily conserved noncoding sequences (CNSs) might be good candidates for those elements. In addition, paralogous CNSs, which are highly conserved among both orthologous loci and paralogous loci...
متن کامل